Ricci Flatness of Asymptotically Locally Euclidean Metrics
نویسندگان
چکیده
In this article we study the metric property and the function theory of asymptotically locally Euclidean (ALE) Kähler manifolds. In particular, we prove the Ricci flatness under the assumption that the Ricci curvature of such manifolds is either nonnegative or nonpositive. The result provides a generalization of previous gap type theorems established by Greene and Wu, Mok, Siu and Yau, etc. It can also be thought of as a general positive mass type result. The method also proves the Liouville properties of plurisubharmonic functions on such manifolds. We also give a characterization of Ricci flatness of an ALE Kähler manifold with nonnegative Ricci curvature in terms of the structure of its cone at infinity. §
منابع مشابه
Ricci-Flat Anti-Self-Dual Asymptotically Locally Euclidean 4-Manifolds
of the Dissertation Ricci-Flat Anti-Self-Dual Asymptotically Locally Euclidean 4-Manifolds by Evan Patrick Wright Doctor of Philosophy in Mathematics Stony Brook University 2013 A classification result for Ricci-flat anti-self-dual asymptotically locally Euclidean 4-manifolds is obtained: they are either hyperkähler (one of the gravitational instantons classified by Kronheimer), or a cyclic quo...
متن کاملSelf-Dual Solutions to Euclidean Gravity
The discovery of self-dual instanton solutions in Euclidean Yang-Mills theory [I] has recently stimulated a great deal of interest in self-dual solutions to Einstein’s theory of gravitation. One would expect that the relevant instanton-like metrics would be those whose gravitational fields are self-dual, localized in Euclidean spacetime and free of singularities. In fact, solutions have been fo...
متن کاملRicci Flow Neckpinches without Rotational Symmetry
We study “warped Berger” solutions ( S1×S3, G(t) ) of Ricci flow: generalized warped products with the metric induced on each fiber {s}×SU(2) a left-invariant Berger metric. We prove that this structure is preserved by the flow, that these solutions develop finite-time neckpinch singularities, and that they asymptotically approach round product metrics in space-time neighborhoods of their singu...
متن کاملRicci Nilsoliton Black Holes
We follow a constructive approach and find higher-dimensional black holes with Ricci nilsoliton horizons. The spacetimes are solutions to Einstein’s equation with a negative cosmological constant and generalises therefore, anti-de Sitter black hole spacetimes. The approach combines a work by Lauret – which relate so-called Ricci nilsolitons and Einstein solvmanifolds – and an earlier work by th...
متن کاملOn Randers metrics of reversible projective Ricci curvature
projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf
متن کامل